Transient chaotic dimensionality expansion by recurrent networks

Summary

Cortical neurons communicate with spikes, which are discrete events in time. Functional network models often employ rate units
that are continuously coupled by analog signals. Is there a benefit of discrete signaling? By a unified mean-field theory for large
random networks of rate and binary units, we show that both models have identical second order statistics. Their stimulus processing
properties, however, are radically different: We discover a chaotic submanifold in binary networks that does not exist in rate models.
Its dimensionality increases with time after stimulus onset and reaches a fixed point that depends on the synaptic coupling strength.
Low dimensional stimuli are transiently expanded into higher-dimensional representations that live within the manifold. We find
that classification performance peaks when stimulus dimensionality matches the submanifold dimension; typically within a single
neuronal time constant. Classification shows a high resilience to noise that exceeds rate models by orders of magnitude. Our theory
mechanistically explains all these observations.

These findings have several implications. 1) Optimal performance is reached with weaker synapses in discrete state networks
compared to rate models; implying lower energetic costs for synaptic transmission. 2) The classification mechanism is robust to
noise, compatible with fluctuations in biophysical systems. 3) Optimal performance is reached when each neuron in the network
has been activated only once; this demonstrates efficient event-based computation with short latencies. 4) The presence of a
chaotic sub-manifold has implications for the variability of neuronal activity; the theory predicts a transient increase of variability
after stimulus onset. Our theory thus provides a new link between recurrent and chaotic dynamics of functional networks, neuronal
variability, and dimensionality of neuronal responses.

Additional Detail

We illustrate the theory for two seminal network models. First, the classical network of ref. [5], their eq. (2), where neurons
have continuous state variables x;(t) € R. Second, the model of binary neurons from ref. [6], their egs. (2.1,2). Neurons here
communicate with discrete events and have a binary state x;(¢) € {—1,1} that changes only at discrete points in time. We use
¢ = tanh as the nonlinear gain function for both models. The synaptic coupling matrix has random i.i.d. Gaussian entries with
zero mean and variance N ~1¢?. Extensions to more realistic settings are straight forward.

By methods from disordered systems and field theory [2-4], we derive a dynamical mean-field theory for the autocorrelation
function Q(7) := (h(t + 7) h(t)) of the synaptic input h;(t) = >_, Ji; ¢(z;(t)) that is exact for large networks N — co. We find
for both models the same equation of motion of Newtonian form

Q1) =V, 4 (Q(7)), (1)

where the “potential” V' depends on the variance of the input Q¢ = Q(0), the gain function ¢, and the coupling strength ¢2.
For the rate model this is the classical result of ref. [5], for the binary model this result is new. This unified theory allows us to
match the parameters for the two model classes to have identical mean-field theories; we can thus compare collective information
processing across model classes in the very same dynamical state.

To analyze how the binary network processes stimuli, we compute the dimensionality d(t) of the state space covered by the
network's response: d(t) measures the maximal number of neuronal coordinates that differ across any pair of network states.
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Figure 1. Transient increase of response dimensionality in a binary network. a Time evolution of first 50 neurons; up
transitions in red, down in blue. Stimulus applied by initializing first L = 10 neurons randomly € {—1,1} with equal probability.
b Time evolution for different realization of stimulus. ¢ Dimensionality of the activity submanifold dggnai(t) as a function of time,
explored by the network across different stimuli (black; theory (2) in red). Dimensionality dnoeise(t) due to different noise realizations:
Gaussian noise with standard deviation o = 0.20 added to each of the L entries of the initial state (gray; theory (2) in blue). Other
parameters: N = 500 neurons, coupling strength g = 0.8.
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Figure 2. Classification by binary network (a, b) and by rate network (¢, d). Both networks are in dynamically identical
states, matched by the mean-field theory (1). a, ¢ Linear readout S. () = wh ()T (zs(t) + £) trained for each ¢ to detect stimulus

identity by minimizing (So — 6ag)®. Readout S, for matching stimulus o = B (black) and for non-matching stimuli o # 3 (gray).

Theoretical prediction (3) in red and blue. b, d Ratio of correct classification. Dashed horizontal line indicates chance level P™'. Same
network as in Figure 1. Standard deviation of readout noise £ is 107*.

A replica calculation yields the closed form differential equation

d 2,
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which is compared to simulation in Figure lc. There are two terms: a linear term o —d(t) and a square root term o y/d(t). For
small d, the square root term wins, so that dimensionality increases; the dynamics is chaotic, the network progressively explores a

2
wider space. For large d, the linear term dominates. In between there is a stable fixed point %O;Q) = (%((ﬁ’(h))) <z

What does this fixed point imply? It shows that the network does not explore its entire space of 2V states. Instead, two states
that differ initially, for example due to applied stimuli, always stay closer than the average distance ~ d(c0)/2. This is visible in the
raster plots in Figure 1a and b: Short after stimulus onset, network states are quite similar across stimuli. As time progresses, the
two states become more and more distinct. An initially low-dimensional set of stimuli is thus expanded into a higher dimensional
representation. For long times, however, the two states differ in only typically d(oc)/2 of their neurons. This limiting dimensionality
grows linearly in Ng2. Variability across different stimuli [1] is thus intimately related to the dimensionality of the network state.

What are the functional consequences of this transient expansion of dimensionality? To find out, we train the network to classify
P random binary patterns, each of length L. Each training sample is a noisy version of its prototype pattern. One linear readout
1w, per pattern is trained by linear regression. The readout signal peaks at around ¢ ~ 1, a time span within which every neuron in
the network has been activated only once (Figure 2a); classification accuracy is close to perfect (b). This shows that the transient
chaotic dimensionality expansion is extremely fast. To explain this finding, we derive an approximation for the signal

Salt) = dSig“;l(t) (1 - j::f;((tt) ) (3)

expressed in terms of the dimensionalities dgignai(t) and dnoise(t), shown in Figure 2a. The first factor dgignai(t)/ P dominates the
initial increase of the signal. It relates the dimensionality of the signal manifold to the dimensionality of the stimulus, P: Performance
increases as stimuli are expanded in higher dimensions. The latter factor depends on dsignai(t)/dnoise(t) and determines how likely
noise corrupts the signal, causing the gradual decline of the signal for long times; the maximum is a compromise between these
two processes.

High resilience to noise of the binary network results from the average large distance d(co) between any pair of states: even
considerable noise (compare dgignal VS dnoise in Figure 1c) is tolerable. A network with continuous rate dynamics in the identical
dynamical state and setting, in contrast, shows vanishing performance; a tiny amount of Gaussian readout noise £ is sufficient to
ruin classification accuracy (Figure 2d). What causes this drastic difference between model classes? In the rate network, states
show little separation and ultimately collapse, d(cc) — 0, so that weak noise causes misclassification (Figure 2d). Discrete-state
networks thus require weaker synaptic coupling, few neuronal activations, and therefore little resources, to implement efficient
computation by transient chaotic dimensionality expansion.
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